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Abstract—Data from parallel-plate heat flux experiments are reviewed and an alternative method of

plotting results is introduced. The graphical form ¢ [ = Nu/Ra'*] vs the logarithm of Ra is shown to

highlight the role of the interplate spacing d in determining the heat flux. Plotting the data in this form

shows that between heat flux transition points, the heat flux (for constant AT) increases to a maximum

and then decreases with increasing Rayleigh number. This behaviour suggests a heat-transfer efficiency

criteria based on the experimental geometry. In this form the data also show an overall decrease in ¢,
with increasing Ra, towards a probable asymptote of between 0.04 and 0.06.

NOMENCLATURE

c, intercept of the straight line on the NuRa
vs Ra plot;

Cp specific heat per unit mass
[calgm~'°C~];

Cy heat transfer coefficient = Nu/Ra'’?;

d, interplate spacing [cm];

g, gravitational acceleration [cms™?];

m, slope of data on NuRa vs Ra graph;

—— Nusselt number;
kAT

n, slope of data on log Nu vs log Ra graph;
Pr, v/ Prandtl number;

0, q/pc, buoyancy heat flux [em°Cs™'];
q, heat flux per unit area [calem™?s™'];

AT .
Ra, ag — d* Rayleigh number;
VK

Ra,, critical Rayleigh number (~ 1708);
transition Rayleigh number;

, temperature [°C];

W, representative horizontal distance [cm];
X, heat flux transition point.

Greek symbols

o, thermal coefficient of volumetric expansion
¢l

AT, temperature difference between plates [°C];

K, molecular diffusivity [cm?*s™'];

v, viscosity [em?s™1];

0, density [gmem™*].

1. INTRODUCTION

THE conveECTIVE flow induced by the temperature
difference between two horizontal plates has been
studied extensively since the turn of the century
(Bénard [1]). The original incentive for this study
was the similarity of this flow with flows induced by
the heat transfer from the earth’s surface. However,

*Present Affiliation: Sonderforschungsbereich 80, Uni-
versity of Karlsruhe, West Germany.

the flow has an inherent interest in that with large
distances between the horizontal plates (d) or large
temperature differences AT the source of energy for
the turbulent motion comes from the potential
energy supplied by the heating and is not com-
plicated by any shearing mechanism. In spite of this
apparent simplicity recent reviews of convection
theory suggest that very little progress has been
made in understanding the flow processes [ 2, 3].

The parameters affecting the transfer of heat per
unit area g, between two horizontal parallel plates in
the normal gravitational field g are the plate spacing
of d, a horizontal dimension W, a temperature
difference AT and the fluid properties. These are the
density p, kinematic viscosity v, molecular diffusivity
k, volumetric coefficient of thermal expansion
ol = (—1/p)(@p/dT)] and the specific heat per unit
mass c,. Dimensional reasoning then yields for the
buoyancy flux per unit area Q[ = g,/pc,]:

Qd (otgATd3 v L)

KAT= vk k' d

(1)

In this form the term of the left hand side of equation
(1) is the Nusselt number Nu and is the ratio of the
actual buoyancy flux to the purely diffusive buoy-
ancy flux through a stagnant fluid.

The first term on the right hand side of the
equation is the Rayleigh number Ra and is the ratio
between the buoyancy force and the two diffusive
processes. The remaining terms are the Prandtl
number Pr and the aspect ratio.

2. THE PLOTTING OF THE

EXPERIMENTAL RESULTS
In the majority of the early measurements it was
assumed that the aspect ratio W/d could be
neglected and the experimental results could be
plotted as graph of the logarithms of the Nusselt
number vs the Rayleigh number with the Prandtl
number as a parameter. A number of these experim-
ental results [4-9] are plotted in Fig. 1. Below a
critical Rayleigh number of about 1700 the fluid
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F1G. 1. Nusselt number data from parallel-plate experiments plotted as a function of Rayleigh number.
Both axes have logarithmic scales.

layer is stagnant and heat is transferred by con-
duction alone (Nu=1). Within the range
1700 < Ra < 10° the fluid motion between the plates
is regular in both a spatial and temporal sense. This
range is therefore often referred to as the laminar
range [10]. At higher Rayleigh numbers (Ra > 10%)
the fluid motions lose their regularity and the flow is
described as turbulent. For large plate spacing and
hence large Ra it might be expected that the heat
transfer will be independent of the plate spacing. In
this case for a constant Prandt] number and aspect
ratio equation (1) would have the form:

Nu = kRa", 2}

with n = 4. However the formulae in Table 1 and the
data plotted in Fig. 1 show that the values of n are
slightly less than {. Because of the greater control
obtained from steady state experiments and the
practical requirements of experimental apparatus
design the majority of experiments are performed
using parallel plates set at fixed distances (d) apart
with the temperature difference AT being varied and
the buoyancy flux @ measured.

For each run it is therefore best to use dimension-
less numbers which separate Q and AT. Malkus [11]
introduced this idea by using equation (1) in the
form

NuRa = i (Ra, Pr, W/d). (3)

The use of the product (NuRa) removes AT from the
left hand side of the equation and is a more logical
way of plotting the results of an experiment where
depth is not varied. Plotted in this form the data for
runs with one fluid (constant Prandtl number)
appears as a series of straight lines with sharp
transitions in slope (Fig. 2).

Krishnamurti [5,13] studied the occurrence of
these heat flux transitions in great detail over a wide
range of Rayleigh and Prandtl numbers (Fig. 3). The
first transition at the critical Rayleigh number Ra, 1s
the onset of convection. Immediately above this first
transition two dimensional rolls occur. The second
transition in the heat flux data occurs in conjunction
with a change to a steady flow pattern of three
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F1G. 2. Non-dimensional heat flux NuRa as a function of
Rayleigh number at high Ra showing a heat flux transition.
(From Garon and Goldstein [6].)

dimensional hexagonal cells. Between the third and
the fifth transitions the flow becomes time de-
pendent. Willis and Deardoff [15] also found the
flow to be intermittent in this range of Rayleigh
numbers. At higher Rayleigh numbers the flow
appears turbulent.

Krishnamurti’s data shows a high Prandtl number
dependence for Pr < 100 (Fig. 3). At higher Prandtl
numbers the buoyant fluid retains its heat but the
fluid motion is damped. This forces the flow to
remain steady at higher Rayleigh numbers than
would be the case for low Prandtl number flows. In
the case of mercury with a low Prandtl number
[0.025] the onset of turbulence occurs at Ra, [2].
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Table 1. Details of previously reported thermal convection experiments
Double plate experiments

Prandtl No. Rayleigh No. Heat flux in turbulent Aspect
Experimenter Range Range regions ratio

Malkus [11] 37-7 — 10'° Nu = 0.08456Rq%32° 0.5-77
Thomas and 0.71 8.52 x 10* 5.1-103
Townsend [12] 3.76 x 10° -

6.75x 10°
Schmidt and 3-4000 - 10° Nu = 0.10Ra®3! pr0-0% 15.3-137
Silveston [ 13]
O’Toole and 0.03-10* 103107 Nu = 0.104Re0%305 py0.084 1.9~137
Silveston [ 10]
Deardoff and 0.71 6.3 x 10° Nu = 6 (4.5-6.5) 5.2-94
Willis [ 14] 2.5x 10° Nu = 82 (5.5-11)

1% 107 Nu=1109-17)
Willis and 0.71-57 5% 1032 x 10° — 33-76
Deardoff [15]
Willis and 0.71-57 - 28 x 10% — 6.7-76
Deardoff [ 16]
Gille [17] 0.71 2.6 x 10°, 6.8 x 10%, — 8.2-128

285 104
Goldstein and 0.71 6.88 x 10°-1.23 x 10° Nu = 0.123Ra%*** 1.0-4.7
Chu [4]
Krishnamurti 0.71-8500  10°-10° — 9.8-98
[s,18]
Chu and 6 2.76 x 10°-1.05 x 10® Nu = 0.183Rg%?78 1.5-6.0
Goldstein [8]
Garon and 5.5 1.36 x 107-3.29 x 10° Nu = 0.130Ra%2%? 2.5-4.5
Goldstein [6]
Wendell Brown 0.71 10°-5.4 x 10* e 12-53
[7]
Threlfall [19] 0.66-091  60-2x 107 Nu = 0.173Rg"?® 25
Fitzjarrald 0.71 4% 10*-7 x 10° Nu = 0.13Ra®3° 1.9-58
[9]

Single plate experiments

Thomas and 6.7 343 x 10° Nu = 120.1 2.0
Townsend [12] 9.10 x 10° Nu= 1456

1.36 x 10! Nu == 169.8
Townsend [20] 0.71 1.39 x 10°-1.74 x 10*®  Nu = 79.6-179.7 0.5-11
Katsaros et al. 6.7 3.0%10°-32%x10'° Nu = 0.062Ra®*? 1.0

(21]

For these cases the Rayleigh number has been computed assuming that AT is twice temperature difference
between the plate and its surroundings and 4 is twice depth from the plate to the unheated surface.

Even in the turbulent convection region there
appears to be some organisation in the flow. Figure
2 shows heat flux transitions in the NuRa vs Ra data
of Garon and Goldstein [6] at Ra = 1.3 x 108,

The occurrence of heat flux transitions at all
Rayleigh numbers appears to be well established.
Figure 4 shows the transition Rayleigh numbers
reported by investigators for water [5, 6, §, 11, 15,
18]. They are plotted on the empirical heat flux
curves of O'Toole and Silveston [ 10] which are given
by:

Nu =238 x 107 3Rq® 816
Nu =0.229Ra%252
Nu = 0.104Ra% 305 p0-084

1700 < Ra < 3500
3500 < Ra < 10° }(4)
10° < Ra < 10°

The regularity of the transition Rayleigh numbers
from each set of resuits is remarkable. At high

Rayleigh numbers the spacings represent approx-

imate multiples of two.

Some confusion exists when the results of Willis
and Deardoff [16] are compared with those of
Malkus [11]. For air and silicon oil Pr = 0.71 and
57. Willis and Deardoff found approximately the
same transition Rayleigh number as Malkus [11]
who used acetone and water (Pr = 3.7 and 7). Willis
and Deardoff [16] therefore suggested that the heat
flux transitions are independent of the Prandtl
numbers. This is in direct conflict with
Krishnamurti’s data [15, 18] which clearly show
Prandt! number dependence (Fig. 3}.

Except for Threlfall [19] who removed the trend
in his data by plotting them in the form of Nu/Ra*/*
vs log Ra the majority of the recent investigators
have plotted their data in form of NuRa vs Ra. In
this form the product NuRa has been described as a
non-dimensional heat flux because for a fixed
interplate spacing 4 and fixed fluid properties a plot
of NuRa vs Ra represents the variation of the
buoyancy heat flux with changes in AT.



1342

R. A. DENTON and I. R. Woop

¥
(5]
10 Turbutent
flow
Time ) .
Chu & Goldsten dependent 3-dimensional flow
(8] -
105 |- //”"_— a
2 g I
Gilte [I7]
N Steady 3-dimensional flow I
104 -
Steady 2-dimensional flow
Ra, 1
103 | | No motion |
ol I 10 102 10% 104
Pr

F1G. 3. Diagram showing the heat flux transition and the types of convective flow observed between them

as functions of Rayleigh number and Prandtl number. (From Krishnamurti [5, 18].) Triangular data

points show Rayleigh numbers at which temperature gradient reversals have been observed in air and
water.
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F1G. 4. Heat flux transition Rayleigh numbers for water (Pr = 6.7) plotted on the empirical curves of
O'Toole and Silveston [ 10].

It is also worth exploring the manner in which Q
varies as a function of d. In order to do this the data
should be plotted such that apart from the properties
of the fluid the ordinate contains only Q and AT and
the abscissa AT and d. This plotting form
(¢, = Nu/Ra'"* vs Ra) would be the most logical way
in which to plot the data from an experiment in
which the temperature difference AT is held constant
but the plate spacing is varied. This form of plotting
is explored in the next section.

3. THE PLOT OF ¢, VERSUS Ra
An indication of how ¢, varies with Ra is obtained
by using the experimentally determined straight lines
from the NuRa vs Ra plot and then mapping these

onto the ¢, Ra plane. If in between the two heat flux
transitions on the NuRa vs Ra plot defined by Ra;,
and Ra; ., the straight line is represented by

NuRa =m;;, Ra—c; ;4.

where m and ¢ are the slope and negative intercept of
this straight line then the maximum value of
Nu/Ra'™ is 048 (m;;, )" (c;;.)7'" and this
occurs at:

&)

The logarithmic scale is used for the Rayleigh
number abscissa because it allows for a greater range
of points to be plotted. Heat flux transition Rayleigh
numbers also appear to be more regular on a
logarithmic scale (Fig. 4).

Ra=dc;;/m;;py.
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F1G. 5. Heat transfer coefficient ¢, for water (Pr = 6.7} at low Rayleigh number plotted against the
logarithm of the Rayleigh number.

Figure 5 shows the ¢, vs logRa from the
experimental data of Krishnamurti [5] and Silveston
{as reported by Brown [7] for water between
transitions K1, K2 and K3, Fig. 4). The fitted curves
are transformed straight line data from an NuRa vs
Ra plot. The slope of the straight lines reported by
Krishnamurti [5] were 2.72 and 4.4. For transitions
K1, K2 and K3 the transitional Rayleigh numbers
were Ra,, |0Ra, and 21Ra, respectively. Also plotted
are O'Toole and Silveston’s [ 10] empirical curves for
1700 < Ra < 3500 and 3500 < Ra < 10° (equation 4).
It is apparent that between transitions K1 and K2
the transformed straight line fits the ¢, vs log Ra data
best for the higher Rayleigh numbers {above the
value of 4320 corresponding to the maximum value
of ¢,). On the plot of NuRa vs Ra the departure of
the experimental points {from the straight line below
the maximum value of ¢, would not be apparent.

A similar ¢, vs logRa plot for high Rayleigh
number can be obtained from Garon and Goldstein’s
[6] data (Fig. 4). Garon and Goldstein reported four
heat flux transitions (corresponding to transitions c,
d, e and fin Fig. 6). However, their data suggest four
more transitions although these are not accurately
defined. For instance, only one data point occurred
above transition g, and between transitions g and h
(Fig. 6). In these cases, the slope of the straight line
on an NuRa vs Ra plot was chosen by assuming that
the spacing of the transition Rayleigh numbers on a
logarithmic scale is regular (e.g. Fig. 4).

High Rayleigh number data produces less distinct
¢, vs log Ra curves (Fig. 6). Consider, for instance,
the data point {for d = 10cm) which does not lie on
the arc between transitions ¢ and d. If it is in fact
inaccurate then the experimental scatter is as great as
the amplitude of the ¢, vs log Ra arcs. 1t should be

noted that if this data point is accurate then Garon
and Goldstein’s [6] results for d = 10 and 18cm
could be fitted with two separate curves. This would
suggest ¢, has an additional dependence of the plate
spacing 4 and would not support the form of ¢,
curves in Fig. 6. However, if the apparent linearity of
NuRa vs Ra data 1s accepted then the occurrence of
the concave downward arcs between the heat flux
transitions on a ¢, vs logRa plot must also be
accepted.

It is worth noting at this stage that the straight
line data on an NuRa vs Ra plot should appear as a
series of shallow concave downwards arcs on the
log Nu vs log Ra plot of Fig. {. However for this form
of presenting the data only the arc between the first
and second transition is apparent.

4. VARIATION OF ¢, BETWEEN THE
TRANSITION RAYLEIGH NUMBERS

For experiments where the fluid properties and
AT remain constant and d is varied, the heat transfer
coefficient ¢, represents a non-dimensional heat flux
and the plot of ¢, vs Ra gives the variation of the
heat flux with d. The shape of this data suggests that
between each pair of heat flux transition Rayleigh
numbers the heat flux at first increases with
increasing plate spacing, goes through a maximum
and then decreases. If the heat flux transitions also
correspond to a change in flow pattern then each
concave downwards curve represents a heat transfer
efficiency curve for a given flow pattern.

With increasing d the heat flux decreases until
another flow pattern becomes marginally more
efficient. A transition to this pattern will then occur
{this may be complicated by the hysteresis effect
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FiG. 6. Heat transfer coefficient ¢, for water (Pr = 6.7) at high Rayleigh number plotted against the
logarithm of the Rayleigh number. Data from Garon and Goldstein [6].

noted by Krishnamurti [5]). The curves for c,
suggest that the heat flux transitions may be caused
by some form of maximization of the heat transfer.

It is also apparent from the shape of the ¢, curves
that for the same temperature difference AT, there
may be two or sometimes as many as four or five
different plate spacings which will produce the same
heat flux. For example from Fig. 5 the same value of
¢, of 0.105 is obtained for plate spacings represented
by Rayleigh numbers of approximately 9 x 10?
{conduction) 2.5 x 103, 1.3 x 10*, and 2.2 x 10*. This
is not obvious from the previous methods of
presenting thermal convection data.

5. THE MEAN VARIATION OF ¢
WITH RAYLEIGH NUMBER
The value of ¢, has been discussed previously in
the literature in the context of the high Rayleigh
number equation:

2

Nu = ¢ Ra'".
Turner [2] suggested that for water and air the
values of ¢, for this equation are 0.09 and 0.08
respectively. A plot of ¢, from the available data over
the full experimental range of Ra is shown in Fig. 7.
(Where only a power relationship of the form
Nu = kRa" was available this was plotted.) Figure 7
highlights both the approximate consistency of each
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experiment and the marked difference between
different experiments. It shows more clearly than Fig.
1 that at high Rayleigh numbers the differences .are
unlikely to be explained by simple Prandt]l number
dependence. A possible reason for these differences is
aspect ratio dependence.

To calculate the Rayleigh number for the single
plate data on Fig. 7 (Townsend [20] and Denton’s
[22] unsteady heat flux experiments), the tempera-
ture difference between the plate and the mean fluid
temperature was assumed to be equivalent to AT.
Twice the height of the enclosed fluid column was
used for d. This likens these single-plate experiments
to the lower half of a parallel-plate experiment. It is,
however, debatable whether twice the fluid depth or
the actual depth should be used. The latter case
would give a Rayleigh number one-eighth the value
of that calculated.

A plot of Long’s [3] theoretical relationship, with
constants obtained by fitting the two extreme points
of Garon and Goldstein’s data, is also shown. Long’s
factor s = % has been assumed.

The overall variation of ¢, with Rayleigh number
suggests that over the experimental range of higher
Rayleigh numbers, ¢, decreases with increasing Ra
(Fig. 7). At much higher Rayleigh numbers
(Ra> 10'%), ¢, tends to a probable asymptote
between 0.04 and 0.06.

To aveid confusion, O'Toole and Silveston’s [ 10]
empirical curves (4) have not been plotted on Fig. 7.
However, they are in good agreement with the
plotted data. An empirical formula suggested by
Hollands, Raithby and Konicek [23] which includes
the large Rayleigh number asymptote of ¢, = 0.0555,
also agrees well with the data in Fig. 7. Empirical
formulae based on Ra'”? do not allow for the
decreasing value of ¢, at high Ra.

6. SUMMARY AND CONCLUSIONS

The- plotting of heat flux data in the form of
¢,(Nu/Ra'?) vs log Ra highlights the role of in-
terplate spacing in thermal convection. Data plotted
in this manner show that for a given interplate
temperature difference these may be several fluid
layer thicknesses that will produce the same in-
terplate heat flux. It also shows that at large
Rayleigh numbers ¢, decreases to a probably
asymptote of between 0.04 and 0.06.

The shape of the ¢, vs log Ra curves suggest that
for a given Prandtl number the heat transfer rate
might be subject to some maximization criterion
which depends on the geometry of the horizontal
plates {ie. spacing and horizontal dimensions).
Further work is required in this area.
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CONVECTION TURBULENTE ENTRE DEUX PLANS HORIZONTAUX

Resume— On presente des resultats experimentaux thermiques sur des plans paralléles et on introduit une

méthode de représentation. La forme graphique ¢,[ = Nu/Ra'"*] en fonction du logarithme de Ra éclaire

l'influence du role de I'espacement d des plaques en déterminant le flux thermique. Avec cette forme, on

montre quentre les points de transition, le flux de chaleur (a AT constant) augmente jusqu'a un

maximum, puis décroit lorsque le nombre de Rayleigh augmente. Ce comportement suggere un critere

bas¢ sur la geometrie. Les resultats montrent aussi une decroissance de ¢,. quand Rua croit, vers une
asymptote probable entre 0,04 et 0,06.

TURBULENTE KONVEKTION ZWISCHEN ZWElI HORIZONTALEN PLATTEN

Zusammenfassung - Experimentelle Daten iber den Wirmestrom zwischen parallelen Platten werden
gesichtet ; zur Darstellung der Ergebnisse wird eine alternative Methode eingefithrt. Es wird gezeigt, daf}
die grafische Darstellung von ¢, [=Nu/Ra'"] Uber dem Logarithmus von Ra den Einflul} des
Plattenabstands d auf den Wirmestrom besonders hervorhebt. Die Auftragung der Daten in dieser Form
zeigt, dal3 zwischen Wirmestrom-Ubergangspunkten der Wirmestrom (bei konstantem AT) bis zu einem
Maximum ansteigt und dann mit zunehmender Rayleigh—Zahl abnimmt. Dieses Verhalten deutet auf ein
auf der experimentellen Geometrie beruhendes Giitekriterium fir den Wirmeibergang hin. In dieser
Darstellung zeigen die Daten insgesamt gesehen auch eine Abnahme von ¢, mit zunehmendem R« mit
einer Tendenz zu einer Asymptote zwischen 0,04 und 0,06.

TYPBYJIEHTHAA KOHBEKLIMS MEXAY ABYMSA I'OPU30OHTAJIbHBIMHA
NIACTUHAMMHA

Annoraums — B pabore maH 0030p IKCIIEpHMEHTAJbHBIX JAAHHBIX MO [JIOTHOCTH TEMJIOBOrO MOTOKA
MeXy napajUlelbHbIMH TUIACTHHAMM M TNPEANOXEH HOBBIH METOd TpadiHuecKOro NpeacTaBIICHHUS
pesynbtaTos. [lokasano, uto rpaduk 3aBHCHMOCTH ¢, [ =Nu/Ra' 3] ot log R oTpaxaer BAMsHHE
pacCTOSIHUS MEXAYy IUIACTHHaMH, d, Ha MJIOTHOCTb TemaoBoro notoka. [Ipw TakoM rpaduueckom
NPEACTABJICHHH BMAHO, YTO MEXKIY MNEPEXOAHBIMH TOYKAMM TJIOTHOCTbL TEMOBOTO MOTOKA (NMpH
nocrosHHoM AT) Bo3pacTaeT 10 MakCHMyMa, a 3aTeM YMEHbLIAETCs ¢ pocToM ducna Penes. [lannas
KapTMHA CBHUACTEJIbLCTBYET O HAJMYUH KPHUTEPHEB 3(POPEKTHBHOCTH TENJIONEPEHOCA, OCHOBAHHBIX Ha
reOMeTPHH IKCilepHMeRTA. [IpH TaKOM NMPENCTABIEHHH JaHHbIE TAKXE CBHAETENLCTBYIOT O CYMMapHOM
CHWKEHHMH 3HAa4€HMA ¢, C POCTOM Ra 10 BO3MOXHOI acHMNTOTh B npenenax 0,04-0.06.



